202 research outputs found

    Measuring thickness in thin NbN films for superconducting devices

    Full text link
    We present the use of a commercially available fixed-angle multi-wavelength ellipsometer for quickly measuring the thickness of NbN thin films for the fabrication and performance improvement of superconducting nanowire single photon detectors. The process can determine the optical constants of absorbing thin films, removing the need for inaccurate approximations. The tool can be used to observe oxidation growth and allows thickness measurements to be integrated into the characterization of various fabrication processes

    A Nanocryotron Memory and Logic Family

    Full text link
    The development of superconducting electronics based on nanocryotrons has been limited so far to few-device circuits, in part due to the lack of standard and robust logic cells. Here, we introduce and experimentally demonstrate designs for a set of nanocryotron-based building blocks that can be configured and combined to implement memory and logic functions. The devices were fabricated by patterning a single superconducting layer of niobium nitride and measured in liquid helium on a wide range of operating points. The tests show 10−410^{-4} bit error rates with above 20 %20\,\% margins up to 50 50\,MHz and the possibility of operating under the effect of a perpendicular 36 36\,mT magnetic field, with 30 %30\,\% margins at 10 10\,MHz. Additionally, we designed and measured an equivalent delay flip-flop made of two memory cells to show the possibility of combining multiple building blocks to make larger circuits. These blocks may constitute a solid foundation for the development of nanocryotron logic circuits and finite-state machines with potential applications in the integrated processing and control of superconducting nanowire single-photon detectors.Comment: Submitted for publication in the Applied Physics Letters special issue "Advances in Superconducting Logic", 8 pages, 5 figure

    A Superconducting Nanowire Binary Shift Register

    Full text link
    We present a design for a superconducting nanowire binary shift register, which stores digital states in the form of circulating supercurrents in high-kinetic-inductance loops. Adjacent superconducting loops are connected with nanocryotrons, three terminal electrothermal switches, and fed with an alternating two-phase clock to synchronously transfer the digital state between the loops. A two-loop serial-input shift register was fabricated with thin-film NbN and achieved a bit error rate less than 10−410^{-4}, operating at a maximum clock frequency of 83 MHz83\,\mathrm{MHz} and in an out-of-plane magnetic field up to 6 mT6\,\mathrm{mT}. A shift register based on this technology offers an integrated solution for low-power readout of superconducting nanowire single photon detector arrays, and is capable of interfacing directly with room-temperature electronics and operating unshielded in high magnetic field environments.Comment: The following article has been published in Applied Physics Letters issue 122. 10 pages, 3 figure

    Reversible Tuning of Superconductivity in Ion-Gated NbN Ultrathin Films by Self-Encapsulation with a High-Îș Dielectric Layer

    Get PDF
    Ionic gating is a powerful technique for tuning the physical properties of a material via electric field-induced charge doping, but is prone to introduce extrinsic disorder and undesired electrochemical modifications in the gated material beyond pure electrostatics. Conversely, reversible, volatile, and electrostatic modulation is pivotal in the reliable design and operation of novel device concepts enabled by the ultrahigh induced charge densities attainable via ionic gating. Here we demonstrate a simple and effective method to achieve reversible and volatile gating of surface-sensitive ultrathin niobium nitride films via controlled oxidation of their surface. The resulting niobium oxide encapsulation layer exhibits a capacitance comparable to that of nonencapsulated ionic transistors, withstands gate voltages beyond the electrochemical stability window of the gate electrolyte, and enables a fully reversible tunability of both the normal-state resistivity and the superconducting transition temperature of the encapsulated films. Our approach should be transferable to other materials and device geometries where more standard encapsulation techniques are not readily applicable

    Open Space – a collaborative process for facilitating Tourism IT partnerships

    Get PDF
    The success of IT projects depends on the success of the partnerships on which they are based. However past research by the author has identified a significant rate of failure in these partnerships, predominantly due to an overly technical mindset, leading to the question: “how do we ensure that, as technological solutions are implemented within tourism, due consideration is given to human-centred issues?” The tourism partnership literature is explored for additional insights revealing that issues connected with power, participation and normative positions play a major role. The method, Open Space, is investigated for its ability to engage stakeholders in free and open debate. This paper reports on a one-day Open Space event sponsored by two major intermediaries in the UK travel industry who wanted to consult their business partners. Both the running of the event and its results reveal how Open Space has the potential to address some of the weaknesses associated with tourism partnerships

    A Nanocryotron Ripple Counter Integrated with a Superconducting Nanowire Single-Photon Detector for Megapixel Arrays

    Full text link
    Decreasing the number of cables that bring heat into the cryocooler is a critical issue for all cryoelectronic devices. Especially, arrays of superconducting nanowire single-photon detectors (SNSPDs) could require more than 10610^6 readout lines. Performing signal processing operations at low temperatures could be a solution. Nanocryotrons, superconducting nanowire three-terminal devices, are good candidates for integrating sensing and electronics on the same technological platform as SNSPDs in photon-counting applications. In this work, we demonstrated that it is possible to read out, process, encode, and store the output of SNSPDs using exclusively superconducting nanowires. In particular, we present the design and development of a nanocryotron ripple counter that detects input voltage spikes and converts the number of pulses to an NN-digit value. The counting base can be tuned from 2 to higher values, enabling higher maximum counts without enlarging the circuit. As a proof-of-principle, we first experimentally demonstrated the building block of the counter, an integer-NN frequency divider with NN ranging from 2 to 5. Then, we demonstrated photon-counting operations at 405\,nm and 1550\,nm by coupling an SNSPD with a 2-digit nanocryotron counter partially integrated on-chip. The 2-digit counter operated in either base 2 or base 3 with a bit error rate lower than 2×10−42 \times 10^{-4} and a maximum count rate of 45×106 45 \times 10^6\,s−1^{-1}. We simulated circuit architectures for integrated readout of the counter state, and we evaluated the capabilities of reading out an SNSPD megapixel array that would collect up to 101210^{12} counts per second. The results of this work, combined with our recent publications on a nanocryotron shift register and logic gates, pave the way for the development of nanocryotron processors, from which multiple superconducting platforms may benefit

    Effects of the cannabinoid CB1 agonist ACEA on salicylate ototoxicity, hyperacusis and tinnitus in guinea pigs

    Get PDF
    Cannabinoids have been suggested as a therapeutic target for a variety of brain disorders. Despite the presence of their receptors throughout the auditory system, little is known about how cannabinoids affect auditory function. We sought to determine whether administration of arachidonyl-2â€Č-chloroethylamide (ACEA), a highly-selective CB1 agonist, could attenuate a variety of auditory effects caused by prior administration of salicylate, and potentially treat tinnitus. We recorded cortical resting-state activity, auditory-evoked cortical activity and auditory brainstem responses (ABRs), from chronically-implanted awake guinea pigs, before and after salicylate + ACEA. Salicylate-induced reductions in click-evoked ABR amplitudes were smaller in the presence of ACEA, suggesting that the ototoxic effects of salicylate were less severe. ACEA also abolished salicylate-induced changes in cortical alpha band (6-10 Hz) oscillatory activity. However, salicylate-induced increases in cortical evoked activity (suggestive of the presence of hyperacusis) were still present with salicylate + ACEA. ACEA administered alone did not induce significant changes in either ABR amplitudes or oscillatory activity, but did increase cortical evoked potentials. Furthermore, in two separate groups of non-implanted animals, we found no evidence that ACEA could reverse behavioural identification of salicylate- or noise-induced tinnitus. Together, these data suggest that while ACEA may be potentially otoprotective, selective CB1 agonists are not effective in diminishing the presence of tinnitus or hyperacusis

    Masses and compositions of three small planets orbiting the nearby M dwarf L231-32 (TOI-270) and the M dwarf radius valley

    Get PDF
    We report on precise Doppler measurements of L231-32 (TOI-270), a nearby M dwarf (d = 22 pc, M⋆ = 0.39 M⊙, R⋆ = 0.38 R⊙), which hosts three transiting planets that were recently discovered using data from the Transiting Exoplanet Survey Satellite (TESS). The three planets are 1.2, 2.4, and 2.1 times the size of Earth and have orbital periods of 3.4, 5.7, and 11.4 d. We obtained 29 high-resolution optical spectra with the newly commissioned Echelle Spectrograph for Rocky Exoplanet and Stable Spectroscopic Observations (ESPRESSO) and 58 spectra using the High Accuracy Radial velocity Planet Searcher (HARPS). From these observations, we find the masses of the planets to be 1.58 ± 0.26, 6.15 ± 0.37, and 4.78 ± 0.43 M⊕, respectively. The combination of radius and mass measurements suggests that the innermost planet has a rocky composition similar to that of Earth, while the outer two planets have lower densities. Thus, the inner planet and the outer planets are on opposite sides of the ‘radius valley’ – a region in the radius-period diagram with relatively few members – which has been interpreted as a consequence of atmospheric photoevaporation. We place these findings into the context of other small close-in planets orbiting M dwarf stars, and use support vector machines to determine the location and slope of the M dwarf (Teff < 4000 K) radius valley as a function of orbital period. We compare the location of the M dwarf radius valley to the radius valley observed for FGK stars, and find that its location is a good match to photoevaporation and core-powered mass-loss models. Finally, we show that planets below the M dwarf radius valley have compositions consistent with stripped rocky cores, whereas most planets above have a lower density consistent with the presence of a H-He atmosphere
    • 

    corecore